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Abstract - In this paper, we use the no-response test idea, introduced in [4] for the inverse obstacle
problem, to identify the interface of the discontinuity of the coefficient γ of the equation (∇ · γ(x)∇ +
c(x))u(x) = 0 with piecewise regular γ and bounded function c(x). We use infinitely many Cauchy data
as measurement and give a reconstructive method to localize the interface. We give the convergence proof
of the no-response test in two ways. The first one contains a pointwise estimate as used by the singular
sources method. The second one is built on an energy (or an integral) estimate which is the basis of the
probe method. As a conclusion of this, the no response can be seen as a unified framework for the probe
and the singular sources method.

1. INTRODUCTION AND STATEMENT OF THE RESULT
1.1. Introduction
The inverse boundary value problem for identifying an inclusion inside a conductive medium from infi-
nitely many measurements was initiated in [3]. Isakov proved uniqueness for identifying the inclusion D.
Later, in [2], a method for identifying the inclusion was proposed.

For the inverse obstacle problem, in [4] the no response test is proposed to localize an obstacle from
finitely or infinitely many measurements and in [6] we find the description of the singular sources method
for shape reconstruction. The purpose of this paper is to use the idea of the no-response test to reconstruct
the inclusion from infinitely many measurements and to clarify its relation to the probe and the singular
sources method.

We show that the functional of the no-response has two different versions of lower estimates. One is
of energy type. It is exactly the one of the probe method as it is given in [2]. This implies that in any
case where the probe method converges then the no-response test also converges. The other version is of
pointwise behavior. Its behavior is exactly the one of the singular sources method, see [6]. We will use
this second version to give another convergence proof of the no-response test.

The paper is organized as follow. In the following subsection we formulate the problem and describe
the no-response test for this problem. In section 2, we recall the probe method and the singular sources
method in details and state the result. In the section 3, we give the idea of the proof of the result and
the relations of these three methods. The complete version of this work is given in [5].

1.2 Statement of the result
Let Ω be a bounded domain in Rn, n = 2, 3 such that the boundary ∂Ω has the C2 regularity. We
assume that Ω contains a bounded domain D with its boundary ∂D. We suppose that ∂D has the C1,1

regularity. We consider a function γ of the form

γ(x) := 1 + χDA(x),

where χD is the characteristic function of D and A(x) is a C1(D) function satisfying A(x) > 0 in D. We
denote by

Lγ := ∇ · γ∇ and Mγ := Lγ + c(x),

where c(x) is a bounded measurable function.
Let Φ be the fundamental solution of M1 and Φ′ be the one of L1 where M1 and L1 are Mγ and Lγ

when γ(x) = 1, x ∈ Ω, extended by 1 to Rn \ Ω and c(x) extended by zero to Rn \ Ω.
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Further, consider f ∈ H
1
2 (∂Ω) and let uf be the H1(Ω) solution of

{
Mγuf = 0 in Ω,
uf = f on ∂Ω.

(1)

This problem is well posed by assuming that zero is not an eigenvalue for the operator Mγ . By taking
all the functions f ∈ H

1
2 (∂Ω), we define the Dirichlet to Neumann map

Λ : H
1
2 (∂Ω) → H− 1

2 (∂Ω), f 7→ Λ(f) :=
∂uf

∂ν
|∂Ω,

where ν is the exterior normal of ∂Ω.
Definition (Inverse Problem.) Let the function c(x) and the Dirichlet to Neumann map Λ be known.
Our task is to reconstruct the interface ∂D of discontinuity of the coefficient γ(x).

Now, we explain the idea of the no-response test introduced in [4] for the inverse obstacle problem
and show how to adapt it to our problem.
The no-response test. By (1) and Green’s formula, we write

uf (x) =
∫

∂Ω

{
∂uf

∂ν
(y)Φ(x, y)− uf (y)

∂Φ(x, y)
∂ν(y)

}
ds(y)

+
∫

∂D

{
∂uf

∂ν
(y)Φ(x, y)− uf (y)

∂Φ(x, y)
∂ν(y)

}
ds(y), (2)

for x ∈ Ω \D. Letting x → ∂Ω in (2) and using Green’s formula, we obtain

uf (x) =
1
2
uf (x) +

∫

∂Ω

{
∂uf

∂ν
(y)Φ(x, y)− uf (y)

∂Φ(x, y)
∂ν(y)

}
ds(y)+

+
∫

∂D

{
∂uf

∂ν
(y)Φ(x, y)− uf (y)

∂Φ(x, y)
∂ν(y)

}
ds(y) (3)

for x ∈ ∂Ω. From our Cauchy data on ∂Ω, we know the function

Jf (x) :=
1
2
uf (x)−

∫

∂Ω

{
∂uf

∂ν
(y)Φ(x, y)− uf (y)

∂Φ(x, y)
∂ν(y)

}
ds(y), x ∈ ∂Ω.

By (3) we have

Jf (x) =
∫

∂D

{
∂uf

∂ν
(y)Φ(x, y)− uf (y)

∂Φ(x, y)
∂ν(y)

}
ds(y), x ∈ ∂Ω. (4)

For ϕ ∈ L2(∂Ω) we define the single layer potential v[ϕ](y) by

v[ϕ](y) =
∫

∂Ω

Φ(x, y)ϕ(x)ds(x) y ∈ Ω.

Multiplying (4) by ϕ, integrating over ∂Ω and exchanging the order of integration, we obtain
∫

∂Ω

Jf (x)ϕ(x)ds(x) (5)

=
∫

∂Ω

ϕ(x)
{∫

∂D

(
∂uf

∂ν
(y)Φ(x, y)− uf (y)

∂Φ(x, y)
∂ν(y)

)
ds(y)

}
ds(x)

=
∫

∂D

{
∂uf

∂ν
(y)

∫

∂Ω

ϕ(x)Φ(x, y)ds(x)− uf (y)
∫

∂Ω

ϕ(x)
∂Φ(x, y)
∂ν(y)

ds(x)
}

ds(y).

Hence ∫

∂Ω

Jf (x)ϕ(x)ds(x) =
∫

∂D

{
∂uf

∂ν
(y)v[ϕ]− uf (y)

∂v[ϕ]
∂ν(y)

}
ds(x). (6)

Let now B be a domain inside Ω. We define the functional

Iε1,ε2(B) := sup
(f,ϕ)∈Mε1,ε2 (B)

∣∣∣∣
∫

∂Ω

Jf (x)ϕ(x)ds(x)
∣∣∣∣ (7)
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where

Mε1,ε2(B) :=
{

(f, ϕ) ∈ H
1
2 (∂Ω)× L2(∂Ω) : ‖v[ϕ]‖H1(B) ≤ ε1

and ‖f − v[ϕ]‖L2(∂Ω) ≤ ε2

}
. (8)

Our main indicator function is defined by

I(B) := lim
ε1,ε2→0+

Iε1,ε2(B). (9)

Note that it is defined on a set of domains, not in the underlying ’physical’ space. Now, using the data
given by the Dirichlet to Neumann map we may calculate the functional (6) or the indicator function
I(B) defined in (7), respectively. In section 2, we give the proof of the following theorem which gives a
reconstructive way how to localize ∂D.
Theorem
We have the following characterization of D from the Dirichlet to Neumann map:

D =
⋂

B∈B

B,

where B := {B ⊂ Ω : I(B) = 0}.

2. THE PROBE AND SINGULAR SOURCES METHODS
Now we recall the probe and the singular sources methods.
The probe method. The functional of the probe method is defined by

∫

∂Ω

(Λ− Λ0)f(x) · f(x) ds(x),

where Λ0 is the Dirichlet-Neumann map when γ = 1 in Ω.
Let now zp ∈ Ω\D such that zp tends to z ∈ Ω when p tends to ∞. We set E(zp) any regular domain

such that zp ∈ Ω \E(zp) and D ⊂⊂ E(zp) ⊂ Ω. Using the Rungé approximation, we can find a sequence
of functions, vp

n, such that ‖ vp
n − Φ(·, zp) ‖H1(E(zp)) tends to zero when n tends to ∞.

We take now fn,p := vp
n |∂Ω and evaluate

∫
∂Ω

(Λ − Λ0)fp
n(x) · fp

n(x)ds(x) , then, see [2], for every p
fixed we obtain

lim
n→∞

∫

∂Ω

(Λ− Λ0)fp
n(x) · fp

n(x)ds(x) =
∫

D

A(x)(∇wp +∇Φ)(x) · ∇Φ(x)dx (10)

where wp is the H1-solution of
{

Mγwp = −∇ · χDA(x)∇Φ(·, zp) in Ω,
wp = 0 on ∂Ω.

(11)

The characterization of z to be in ∂D is given by the testing

lim
p,n→∞

∫

∂Ω

(Λ− Λ0)fp
n(x) · fp

n(x)ds(x) = ∞.

The singular sources method. For this method we take c(x) = k2 > 0, constant. One can find a
sequence of densities gp

n(ξ) such that vp
n :=

∫
S

eikx·ξgp
n(ξ)dξ tends to Φ(·, zp) in E(zp) with the H1-norm,

see [1] or [6].
We define up

n as the solution of {
Mγup

n = 0 in Ω,
up

n = vp
n on ∂Ω.

Then wp
n := up

n − vp
n satisfies:

{
Mγwp

n = −∇ · χDA(x)∇Φ(·, zp) in Ω,
wp

n = up
n − vp

n on ∂Ω.

Tending n to ∞, we deduce that wp
n tends to wp in H1(Ω) which the solution of (11). From the data

(up
n,

∂up
n

∂ν ) |∂Ω, we compute via the point source method the values up
n(zp), then we compute
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lim
n→∞

(up
n(zp)− vp

n(zp)) = wp(zp). (12)

The characterization of z to be in ∂D is given by the testing limp→∞ wp(zp) = ∞.

3. THE IDEA OF THE PROOF OF THE THEOREM AND A RELATION BETWEEN
THE THREE METHODS
3.1 Description of the proof
We give the proof for the case n = 3. The case n = 2 can be treated similarly with the appropriate
changes for the behavior of the related fundamental solutions. We denote by N the set of positive inte-
gers. We start by proving the first part of the theorem.

3.1.1 Case one
Let D be such that D ⊂ B. Let also ϕ ∈ L2(∂Ω) be such that ‖v[ϕ]‖H1(B) < ε1 and f ∈ H

1
2 (∂Ω) be

such that ‖f − v[ϕ]‖L2(∂Ω) ≤ ε2. Then the function w := uf − v[ϕ] ∈ L2(Ω) satisfies
{

Mγw = −∇ ·A(x)χD∇(v[ϕ]) in Ω,
w = f − v[φ] on ∂Ω.

(13)

We decompose this function into w := w̃+ ˜̃w where w̃ satisfies (13) with homogeneous boundary condition
and ˜̃w the solution of (13) with homogeneous equation in Ω. Hence we have ‖w̃‖H1(Ω) ≤ cε1 and
‖ ˜̃w‖H1(F ) ≤ cε2 for every F ⊂⊂ Ω. Then also ‖w‖H1(F ) ≤ c(ε1 + ε2) for every F ⊂⊂ Ω. Taking F = B,
we deduce that ‖uf‖H1(B) ≤ c(ε1 +ε2). Hence Iε1,ε2(B) ≤ c(ε1 +ε2)2. This means that if we have D ⊂ B,
then:

I(B) = 0.

3.1.2 Case two
We suppose that ∂B ∩D 6= ∅. We take a point a in ∂D \ B and a sequence zp ∈ Ω \ (D ∪ B) such that
zp tends to a. We denote by E(zp) an open domain containing D and B such that zp ∈ Ω \ E(zp). We
consider the sequence of functions Φ(·, zp). We have the following lemma.

Lemma
For every p ∈ N, we can find a sequence of functions ϕp

n(x) ∈ L2(∂Ω) such that
‖v[ϕp

n]− βΦ(·, zp)‖H1(E(zp)) tends to zero when n tends to ∞, where β is a constant independent on x.

Now for every p ∈ N fixed, we have:
∫

∂Ω

Jf (x)φp
n(x)dx =

∫

∂D

(
∂uf

∂ν
(y)v[ϕp

n]− uf (y)
∂v[φp

n]
∂ν(y)

)ds(y).

For every p ∈ N, let (fp
n)n,p ⊂ H

1
2 (∂Ω) be such that ‖fp

n − v[ϕp
n]‖L2(∂Ω) tends to zero when n tends to

∞. We define ufp
n the H1(Ω)-solution of the problem:

{
Mγufp

n = 0 in Ω,
ufp

n = fp
n on ∂Ω.

(14)

Proposition 1
We have:

| lim
p,n→∞

∫

∂Ω

Jfp
n(x)φp

n(x)dx| = ∞

By Proposition 1 and case one, we deduce the first part of the theorem. There are two ways to prove
Proposition 1. In the following subsection we explain them.

3.2 Two representations for the blowup
We set wp

n := ufp
n − v[ϕp

n]. Hence wp
n satisfies:

{
Mγwp

n = −∇ · χDA(x)∇v[ϕp
n] in Ω,

wp
n = fp

n − v[φp
n] on ∂Ω.

(15)
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We write wp
n = w̃p

n + ˜̃wp
n where w̃p

n satisfies
{

Mγw̃p
n = −∇ · χDA(x)∇v[φp

n] in Ω,
w̃p

n = 0 on ∂Ω.
(16)

and ˜̃wp
n is a solution of {

Mγ
˜̃wp

n = 0 in Ω,
˜̃wp

n = fp
n − v[φp

n] on ∂Ω.
(17)

For p ∈ N fixed, we obtain that v[φp
n] tends to βΦ(·, zp) on any subset of E(zp) in the H1 norm (see

Lemma). Hence, the right hand side of (16) tends to −β∇·χDA∇Φ(·, zp) in H−1(Ω). From Lax-Milgram
lemma we deduce that w̃p

n is bounded in H1(Ω) and tends weakly to some w ∈ H1(Ω) which satisfies
in the distribution sense Mγw = −β∇ · χDA∇Φ(·, zp). Similarly w̃p

n is bounded in H
1
2 (∂Ω) and, hence,

converges strongly to w in L2(∂Ω). Thus, w = 0 on ∂Ω.
Consider the problem (17). Since ‖fp

n − v[ϕp
n]|L2(∂Ω) tends to zero as n tends to ∞, by interior

estimates we deduce that ˜̃wp
n tends to zero in H1(B) For all B ⊂⊂ Ω. Finally, we deduce that wp

n tends
to w(·, zp) ∈ H1(Ω) in H1(B) for every B ⊂⊂ Ω, where w satisfies:

{
Mγw = −β∇ · χDA(x)∇Φ(·, zp) in Ω,
w = 0 on ∂Ω.

(18)

Since D ⊂ E(zp), the previous argument and Lemma imply that:
∫

∂Ω

Jfp
n(x)ϕp

n(x)ds(x) =
∫

∂D

{
v[ϕp

n]
[
∂ufp

n

∂ν
− ∂v[ϕp

n]
∂ν

]
+

[
v[ϕp

n]− ufp
n

] ∂v[ϕp
n]

∂ν

}
ds(x)

tends to

β

∫

∂D

{
Φ(·, zp)

∂w

∂ν
− w

∂Φ
∂ν

(·, zp)
}

ds(x). (19)

I. Integration in Ω \ D: The pointwise version of the no-response test. Using the Green’s
representation formula applied in Ω \D, (19) becomes:

βw(zp, zp)− β

∫

∂Ω

Φ(·, zp)
∂w

∂ν
ds(x). (20)

II. Integration in D: The integral version of the no-response test. We set Φ := Φ(·, zp) and
write:

∫

∂D

{
Φ

∂w

∂ν
− w

∂Φ
∂ν

}
ds(x)

=
∫

∂D

{
Φ

∂(w + Φ)
∂ν

− (w + Φ)
∂Φ
∂ν

}
ds(x). (21)

We remark that w + Φ satisfies ∇ · γ∇(w + Φ) = 0 in D and recalling that ∆Φ = 0 in D we deduce that:
∫

∂D

{
Φ

∂(w + Φ)
∂ν

− (w + Φ)
∂Φ
∂ν

}
ds(x) =

= −
∫

∂D

{
Φ(1 + A(x))

∂(w + Φ)
∂ν+

− (w + Φ)
∂Φ
∂ν+

}
ds(x)

=
∫

D

A(x)∇Φ · ∇(Φ + w) dx (22)

where ν+ is the unit normal oriented into Ω \D. Hence,
∫

∂Ω
Jfp

n(x)φp
n(x)ds(x) tends to

β

∫

D

A(x)∇Φ · ∇(Φ + w) dx. (23)

3.3 Outline of the Proof of Proposition 1
Now for every ε > 0 fixed, we choose:

β := β(zp, ε) =
ε

4

[
max(

∫

B

|Φ(·, zp)|2dx,

∫

B

|∇xΦ(·, zp)|2dx)
]−1

.

N01
5



With this choice, we have ‖βΦ(·, zp)‖H1(B) ≤ ε
2 . Since ‖v[ϕp

n] − βΦ(·, zp)‖H1(E(zp) tends to zero as n
tends to ∞, for n large enough we obtain ‖v[ϕp

n]‖H1(B) ≤ ε and ‖v[ϕp
n]− fp

n‖L2(∂Ω) ≤ ε.
As a conclusion we have a sequence of functions φp

n such that for every fixed p ∈ N there is N(p, ε) ∈ N
such that for all n ≥ N(p, ε) we have

‖v[ϕp
n]‖H1(B) ≤ ε and ‖fp

n − v[ϕp
n]‖L2(∂Ω) ≤ ε.

This sequence has the property: for p fixed,
∫

∂Ω
Jfp

n(x)ϕp
n(x)ds(x) tends to

βw(zp, zp)− β

∫

∂Ω

Φ(·, zp)
∂w

∂ν
ds(x).

The function w is called the reflected solution to the system Mγ . The following proposition gives
some properties of w.

Proposition 2
1) The sequence w(zp, zp) tends to ∞ when zp tends to a.
2) The sequence

∫
∂Ω

Φ(·, zp)∂w
∂ν ds(x) is bounded with respect to p.

We remark that β(zp, ε) is bounded with respect to zp since (zp)p∈N ⊂⊂ Ω \B. Proposition 2 implies
that

lim
p,n→∞

∫

∂Ω

Jfp
n(x)ϕp

n(x)ds(x) = ∞.

Hence Iε(B) = ∞. We proved the theorem.
On the other hand we can show the blowup of

∫
∂Ω

Jfp
n(x)φp

n(x)dx by using (23). This is the way of
the probe method, see [2].

3.4 Some comments on the relation between the three methods
The limit (23) is the one related to the probe method (10). The behavior of the pointwise estimate of
the no-respose test (20) is exactly the one of the singular sources method (12). The convergence of the
no-response test is a consequence of the convergence of either the probe method or the singular sources
method.

Since it is known that the integral (23) diverges as zp tends to ∂D, see [2], then∫
∂Ω

Jfp
n(x)φp

n(x)ds(x) diverges also.
To prove the convergence of these methods, the energy version is easier, see [2], since the pointwise

estimates are more difficult to establish than the energy ones. Regarding the stability, the pointwise
version is more suitable, see [6].
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